Ablation of MEKK4 kinase activity causes neurulation and skeletal patterning defects in the mouse embryo.

نویسندگان

  • Amy N Abell
  • Jaime A Rivera-Perez
  • Bruce D Cuevas
  • Mark T Uhlik
  • Susan Sather
  • Nancy L Johnson
  • Suzanne K Minton
  • Jean M Lauder
  • Ann M Winter-Vann
  • Kazuhiro Nakamura
  • Terry Magnuson
  • Richard R Vaillancourt
  • Lynn E Heasley
  • Gary L Johnson
چکیده

Skeletal disorders and neural tube closure defects represent clinically significant human malformations. The signaling networks regulating normal skeletal patterning and neurulation are largely unknown. Targeted mutation of the active site lysine of MEK kinase 4 (MEKK4) produces a kinase-inactive MEKK4 protein (MEKK4(K1361R)). Embryos homozygous for this mutation die at birth as a result of skeletal malformations and neural tube defects. Hindbrains of exencephalic MEKK4(K1361R) embryos show a striking increase in neuroepithelial cell apoptosis and a dramatic loss of phosphorylation of MKK3 and -6, mitogen-activated protein kinase kinases (MKKs) regulated by MEKK4 in the p38 pathway. Phosphorylation of MAPK-activated protein kinase 2, a p38 substrate, is also inhibited, demonstrating a loss of p38 activity in MEKK4(K1361R) embryos. In contrast, the MEK1/2-extracellular signal-regulated kinase 1 (ERK1)/ERK2 and MKK4-Jun N-terminal protein kinase pathways were unaffected. The p38 pathway has been shown to regulate the phosphorylation and expression of the small heat shock protein HSP27. Compared to the wild type, MEKK4(K1361R) fibroblasts showed significantly reduced phosphorylation of p38 and HSP27, with a corresponding heat shock-induced instability of the actin cytoskeleton. Together, these data demonstrate MEKK4 regulation of p38 and that substrates downstream of p38 control cellular homeostasis. The findings are the first demonstration that MEKK4-regulated p38 activity is critical for neurulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثرات تراتوژنیک ویتامین A بر شکل‌گیری لوله عصبی در جنین موش

ABSTRACT In this study we have tried to analyse the effect of vit.A ampule(retinol )on formation of neural tube (neurulation)in mouse (balb/c)embryo to determine the critical time of its formation and the optimum teratogenic dose of this substance in the experimental induction of neral tube defects(NTD). After we observed the vaginal plug(v.p=0day),mated animals were divided into two groups ...

متن کامل

Effect of arsenic on neural tube in mouse embryo and relation to reduced folate carrier (RFC-1)

Arsenic is an important environmental toxicant which is usually found in drinking water in inorganic form. The hypothesis tested in this investigation is; arsenic exposure causes neural tube defects (NTDs) andthese defects of the central nervous system are more likely related to folate deficiency during fetal life. In this study, sodium arsenate was administered via intraperitoneal route at a r...

متن کامل

Biomechanical coupling facilitates spinal neural tube closure in mouse embryos.

Neural tube (NT) formation in the spinal region of the mammalian embryo involves a wave of "zippering" that passes down the elongating spinal axis, uniting the neural fold tips in the dorsal midline. Failure of this closure process leads to open spina bifida, a common cause of severe neurologic disability in humans. Here, we combined a tissue-level strain-mapping workflow with laser ablation of...

متن کامل

Specific isoforms of protein kinase C are essential for prevention of folate-resistant neural tube defects by inositol.

A proportion of neural tube defects (NTDs) can be prevented by maternal folic acid supplementation, although some cases are unresponsive. The curly tail mutant mouse provides a model of folate-resistant NTDs, in which defects can be prevented by inositol therapy in early pregnancy. Hence, inositol represents a possible novel adjunct therapy to prevent human NTDs. The present study investigated ...

متن کامل

Valproic acid disrupts the biomechanics of late spinal neural tube closure in mouse embryos

Failure of neural tube closure in the early embryo causes neural tube defects including spina bifida. Spina bifida lesions predominate in the distal spine, particularly after exposure to the anticonvulsant valproic acid (VPA). How VPA specifically disturbs late stages of neural tube closure is unclear, as neurulation is usually viewed as a uniform 'zippering' process along the spine. We recentl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 25 20  شماره 

صفحات  -

تاریخ انتشار 2005